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ABSTRACT
This paper summarizes three recent, novel algorithms developed
within VAMPIRE, namely optic disc and macula detection, artery-
vein classification, and enhancement of binary vessel masks, and
their performance assessment. VAMPIRE is an international collab-
oration growing a suite of software tools to allow efficient quantifi-
cation of morphological properties of the retinal vasculature in large
collections of fundus camera images. VAMPIRE measurements
are currently mostly used in biomarker research, i.e., investigating
associations between the morphology of the retinal vasculature and
a number of clinical and cognitive conditions.

1. INTRODUCTION

We present three novel algorithms for optic disc (henceforth OD) and
macula detection, artery-vein (A-V) classification, and enhancement
of binary vessel masks, developed within the VAMPIRE retinal im-
age analysis project, an international collaboration of 10 clinical and
image processing centres [1]. The VAMPIRE software suite aims to
allow efficient quantification of morphological features of the reti-
nal vasculature in large sets of fundus camera images, generating
measurements used for biomarker discovery. Biomarkers are mea-
surements that associate, in a statistical sense, with measurements
related to specific conditions [2, 3, 4]. Examples using VAMPIRE
software include [5] (lacunar stroke) and [6] (cognitive ageing), and
ongoing VAMPIRE studies impact sarcopenia, schistosomiasis and
gene expression.

A fundamental requirement of biomarker research is access to
large data quantities to achieve sufficient power and significance.
Measuring typical retinal quantities like vessel width, tortuosity
and branching angles manually is extremely time-consuming; some
quantities like the fractal dimension cannot even be measured by
hand. This is the basic motivation for semi-automatic software tools
generating reliable measurements efficiently.

For our purposes here, we can identify two parts in the grow-
ing literature of computer-assisted retinal image analysis (henceforth
RIA; see [7] for a recent, exhaustive survey), one devoted to assist-
ing diagnosis, the other to biomarker discovery. Both require the
location of retinal landmarks to set up retinal co-ordinates, as well
as specialized measuring algorithms. We present three novel such
algorithms.

(1) OD and macula location. We propose a novel algorithm based
on inpainting and a symmetry transform, which performs very com-
petitively in tests with a public data set and images from our local
diabetes screening program.
(2) A-V classification. We show that an expectation-maximization
algorithm with Gaussian mixture models, using a few discriminative
features, achieves good performance.
(3) Vessel mask enhancement. Vessel contours in binary masks gen-
erated by vessel location algorithms are typically irregular. We in-
troduce a novel algorithm, with closed-form solution, performing
splined-based smoothing of local contours under a parallelism con-
straint.

Given space limits, we only summarize validation results for
each algorithm. We notice that the RIA validation is a topic of fun-
damental importance and still under discussion in the community:
no universally accepted protocol exists to declare performance satis-
factory (itself a debated concept) of RIA algorithms. The reader is
directed to the recent international discussion and proposal reported
in [8].

2. OPTIC DISC AND FOVEA DETECTION

The new detectors for OD and fovea exploit bright-dark circularly
symmetric structures in vessel-removed, inpainted monochrome im-
ages. The symmetry cue proves more resilient to varying mage qual-
ity than classical template-based localization, and does not rely heav-
ily on contextual cues possibly absent in low-quality images. The
method exploits the fact that the OD is crossed by large vessels, and
the fovea located in an avascular zone.

The input image is converted to grayscale. Vessels are removed
using the inpainting procedure described in [9]. Dark or bright radial
symmetries are captured by the Fast Radial Symmetry transform by
Loy and Zelinsky [10]. For each radius R in a defined range and
for each pixel location ~p, a positively affected pixel p+ and a nega-
tive affected pixel p− are obtained translating ~p along the gradient
direction in positive (dark to bright) and negative (bright to dark)
orientations. Values of the bright (OD) and dark (fovea) symme-
try maps are generated by accumulating in “affected” pixels values
depending on the gradient magnitude of the originating points and
filtering maps in order to make the contribution scale invariant, and
summing the contributions of all the radii used. If radii are densely



sampled, the transform captures well all the symmetric structures in
the range used. For OD detection we compute the “positive” sym-
metry map S+ on all integer radius values within 7 and 12 pixels in
a subsampled image where the expected OD radius is approximately
10 pixels (Fig. 1 D). For the macular region, also usually symmetric
in its inner structure, we compute the “negative” symmetry map S−

in the range 3-12 pixels (Fig. 1 E).
To avoid false detections due to bright circular spots, patholo-

gies or dark vessels, we multiply the symmetry map by a vessel-
dependent weight function. Here the likelihood for a pixel to be the
OD centre is given by:

pOD(x, y) = S+(x, y) ·max(0.1, V (x, y)) (1)

where V (x, y) is the vessel density function obtained by convolv-
ing a vessel segmentation mask (Fig. 1 B) with a circular kernel,
saturated to 1 when the vessel density is above a threshold (Fig. 1
C).

Similarly, the fovea detector estimates the likelihood for an im-
age point to be the fovea centre as:

pF (x, y) = S−(x, y) · (1− V (x, y)) (2)

Fig. 1. OD and fovea localization steps: A: Grayscale inpainted im-
age. B: Major vessels segmentation. C: Vessel density. D: Positive
Fast Radial Symmetry Map computed with rays in a range includ-
ing the expected OD size (7-12 pixels of the subsampled image). It
presents a sharp maximum near the true OD centre. E: Negative part
of the Fast Radial Symmetry computed with rays in a wide range
3-12 pixels. F: detected OD and fovea centres superimposed to the
original image.

We tested the algorithm with 300 MESSIDOR images (http://messidor.crihan.fr)
that we had annotated by three ophthalmologists using VAMPIRE
annotation tools. We compared the locations of manual and auto-
matic OD centres. Following the recent literature, we considered the
OD detected correctly if the distance between automatic and manual
centres was less than half of the expected average OD diameter,
i.e., 200 pixels at the original resolution [11]. The detection rate was
100% despite the presence of images with poor quality and artefacts.

Fovea centre detection was validated on 117 images acquired
from the Tayside diabetic screening program. Images were 3504 ×
2336 pixels and type-2 field (macula-centred). The images were di-
vided into three quality classes, good (67), medium (30), and diffi-
cult (20), by a trained observer who also annotated the fovea centre.
Quality was determined by the visibility and integrity of the macu-
lar region. To compare results with previous work we considered the
fovea detected successfully if the distance between manual and auto-
matic centres was lower than 1/4 of the OD diameter. The percentage

of correct detections was 97.4%, (100% for the good subset, 96.7%
for the medium and 95% for the difficult one, considerably higher
than the 68.6% obtained with the technique previously implemented
within the VAMPIRE framework [12].

OD center fovea center
(300 images) (107 images)

avg error (%OD radius) 12.6 32.6
std. dev. 9.0 31.8

median error 10.5 23.8
detection rate (%) 100 97.5

Table 1. Average errors (distance between estimated and annotated
points/expected OD size), standard deviations, median errors and de-
tection rates for OD and fovea centres on the two annotated datasets.

The results obtained compare favourably with the literature;
e.g., in similar conditions, Niemejier et al. [13] reported detection
rates between 93% and 99.4% for OD and 89% and 96.8% for the
fovea. We notice that no images have been removed from the image
groups annotated by our experts, including cases with pathologies.
The new OD and fovea detectors are currently being validated on
larger datasets. The symmetry-based OD detector is now the default
method to initialize the accurate OD segmentation technique ( [9]).

3. ARTERY-VEIN CLASSIFICATION

We concentrate on the major veins and arteries in Zone B, the re-
gion surrounding the OD normally used in retinal biomarkers studies
(Figure 2(a)) [5, 14, 15]. We deploy a Gaussian mixture model, an
expectation-maximization unsupervised classifier, and a quadrant-
pairwise approach.

A B

Fig. 2. (a) Quadrants and Zone B (annulus around OD). (b) Illustra-
tion of main elements in boundary refinement.

To counteract inter- and intra-image contrast, luminosity and
colour variability, we first compensate for background illumination
in the red, green and hue channels [16]. The illumination-corrected
images are then processed to extract colour intensity features from
vessel centreline pixels. In addition, the hue channel is processed
before illumination correction in order to improve vessel contrast.
To extract centreline pixels, a start and an end point (S and E resp.)
are selected manually and the intervening vessel is tracked (Figure
2(b)).

To achieve this, we locate a point Pnew, 5 pixels ahead of S
towards E (i.e., with direction from S to E), and obtain the intensity
profile across the vessel axis at Pnew (Figure 2(b)). The approximate
midpoint of the vessel,C (marked red on the intensity profile) is then
found. The procedure is iterated with a new direction (from C to E),
VC−E , and so on until the end point E is reached. Thus we obtain
cross-sectional intensity profiles at every 5th pixel between S and E



(blue lines in Figure 2(b)). A Canny edge detector is then applied to
each profile to locate vessel edges (yellow in Figure 2(b)). The final
centerline pixels (pink in Figure 2(b)) are located as the midpoints
of each pair of edge points.

The image was divided into four quadrants by locating the OD
and its approximate diameter [9]. After locating vessel centre-
lines in each quadrant, four colour features are computed from the
illumination-corrected image in a circular neighbourhood around
each vessels centreline pixels, with diameter 60% of the mean vessel
diameter. The features are the most significant ones reported in var-
ious studies [2, 3, 4]: the mean of red (MR), mean of green (MG),
mean of hue (MH) and variance of red (VR). After feature extrac-
tion, there are four sets of feature vectors Fq, q = 1, . . . , 4, for each
pair of quadrant (I, II), (II, III), (III, IV) and (IV, I). Working on pairs
of quadrants is a compromise between localizing features (avoiding
variations due to location and not to vessel class) and guaranteeing
the presence of at least one artery and one vein. Finally, each set Fq
of colour features is classified using an EM classifier with a Gaus-
sian Mixture Model (GMM-EM). As stated above, the classification
is performed separately on pairs of quadrant. We tested our classifier
with 406 vessels from 35 colour fundus images. The system did not
assign a final label (artery or vein) to 55 vessels, i.e. 13.5% were
classified not labeled. 92% of the remaining 351 vessels (which
were assigned a label of artery or vein) were classified correctly.

To assess performance, we compared the automatic results with
manual labels from two clinicians at two different experience lev-
els (student and consultant), for which no adjustment was applied.
We estimated performance parameters following [4], resulting in
sensitivity 0.8182-0.7688, specificity 0.8978-0.9591), and accuracy
0.8719-0.8547, where the two figures refer to results for arteries and
veins respectively (e.g., arteries specificity - veins specificity).

4. ENHANCEMENT OF BINARY VESSEL MASKS

We introduce a costrained spline-fitting algorithm to refine vessel
contours in raw binary maps obtained from vessel detectors, and
show a large improvement of vessel width estimation with the main
public data set for this task, REVIEW [17].

First, a temporary skeleton is obtained using morphological thin-
ning on the binary mask; branching points are removed and a natural
cubic spline is fitted to the thinned centreline. Second, two coupled
cubic splines are fitted to the original (jagged) contours by solving
a linear system overconstrained by a parallel-tangent constraint cou-
pling the two splines and penalizing locally non-parallel contours.
The system can be written as:

yA = ai(x− xA,i)
3 + bi(x− xA,i)

2 + ci(x− xA,i) + di

yB = αi(x− xB,i)
3 + βi(x− xB,i)

2 + γi(x− xB,i) + δi

y′A(xA,i+1) = y′B(xB,i+1)
(3)

where the spline knots (xA,i, yA,i) and (xB,i, yB,i) are n pairs of
coupled contour points, and the last equation is the parallelism con-
straint.

Finally, the vessel width wj at point Cj lying on the spline-
smoothed centreline is estimated computing the Euclidean distance
between points Dj and Ej on the two refined contours and lying on
segment dj , orthogonal to the centreline at Cj [18].

We tested our constrained spline fit by applying it to width es-
timation from binary vessel masks. We used the public REVIEW
database [17], whose four image sets offer a representative spec-
trum of vessel appearance in fundus images: high-resolution (HRIS

Fig. 3. Vessel width at Cj estimated as the Euclidean distance wj
between Dj and Ej .

dataset), central light reflex (CLRIS dataset), vascular diseases
(VDIS dataset) and kickpoints (KPIS dataset). Three experts (ob-
serversO1, O2 andO3) marked manually vessel edge points and the
average of the three width estimates is considered as the ground truth
width. REVIEW contains 5066 profiles. For comparison of different
algorithms, the error χi is defined as χi = wi − ψi where wi is the
width at ith location estimated by the algorithm under examination.
The standard deviation σχ of the error is used to evaluate algorithm
performance and considered more important than the mean [19]. A
further useful parameter for performance evaluation is the success
rate (SR), i.e. the number of meaningful measurements returned
by the algorithm over the total number of profile reported in the
database.

Table 2 reports the performance of our method and its compar-
ison with recent algorithms: Extraction of Segment Profiles (ESP)
procedure [19] and Xu’s graph-based method [20]. The performance
achieved by our simple double-spline fit with parallelism constraint
at knots is comparable and sometime better to that of specialized,
sophisticated width estimation algorithm.

5. CONCLUSIONS

We have presented briefly three algorithms recently developed
within the VAMPIRE project, for OD/fovea detection, A-V clas-
sification and enhancement of binary vessel masks. Two have
been incorporated in the VAMPIRE software suite and are used
in current clinical studies on retinal biomarkers. The OD/fovea
detection introduces a novel combination of symmetry detection
and inpainting, leading to competitive results compared with the
recent literature. Our A-V classifier show that an expectation-
maximization algorithm with Gaussian mixture models achieves
good performance using only a few discriminative features. Our
novel contour-smoothing technique, based on spline fitting with a
parallelism constraint,improves dramatically the accuracy of width
estimation taken directly from unprocessed binary masks from a
standard vessel detector, in tests with the standard public data set,
REVIEW. Current VAMPIRE work includes validation of these
modules with larger, annotated data sets.
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Table 2. Performance comparison of the width measurement methods on the REVIEW database

Method Measurement Error SR % Measurement Error SR %
µ σ µχ σχ µ σ µχ σχ

HRIS CLRIS
First observer: O1 4.12 1.25 -0.23 0.288 100 13.19 4.01 -0.61 0.567 100

Second observer: O2 4.35 1.35 0.002 0.256 100 13.69 4.22 -0.11 0.698 100
Third observer: O3 4.58 1.26 0.23 0.285 100 14.52 4.26 0.72 0.566 100

Ground truth: O 4.35 1.26 - - 100 13.80 4.12 - - 100
ESP [19] 4.63 - 0.28 0.420 99.7 15.7 - -1.90 1.469 93.0

Graph [20] 4.56 1.30 0.21 0.567 100 14.05 4.47 0.08 1.78 94.1
Proposed method 3.93 1.40 -0.42 0.760 95.7 13.81 3.68 -0.16 1.229 90.2

VDIS KPIS
First observer: O1 8.50 2.54 -0.35 0.543 100 7.97 0.47 0.45 0.233 100

Second observer: O2 8.91 2.69 0.06 0.621 100 7.60 0.42 0.08 0.213 100
Third observer: O3 9.15 2.67 0.30 0.669 100 7.00 0.52 -0.53 0.234 100

Ground truth: O 8.85 2.57 - - 100 7.52 0.42 - - 100
ESP [19] 8.80 - -0.05 0.766 99.6 6.56 - -0.96 0.328 100

Graph [20] 8.35 3.00 -0.53 1.43 96.0 6.38 0.59 -1.14 0.67 99.4
Proposed method 8.17 2.82 -0.79 1.381 92.1 6.06 0.28 -1.32 0.319 93.9
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