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Motivation and aim

Retinal Image Analysis (RIA) aims to develop computational and mathematical techniques

for helping clinicians with the diagnosis of diseases such as diabetes, glaucoma and

cardiovascular conditions, that may cause changes in retinal blood vessel patterns. RIA

algorithms have to be validated and, in turns, validation requires ground truth in the form of

significant volumes of images annotated by medical experts. Obtaining such annotations is

expensive, laborious, and not always feasible. This motivates the creation of a synthetic

dataset. This work is part of an ongoing project aimed to generate synthetic retinal fundus

images. It focuses on the generation of retinal vessels (arteries and veins) and their

integration with non-vessel regions (i.e. retinal background, fovea and optic disc) to yield

complete fundus camera images1.

Methods

The proposed approach consists of a learning phase and a generation phase. In the former

phase, data describing vascular morphology and texture are collected from annotations of

real images. Models are specified and their parameters learned from the training data. In the

latter phase, the models obtained are used to create synthetic vascular networks. Arteries

and veins are created separately with the same protocol, and then combined together.

Results

Conclusions

The proposed method is able to generate realistic synthetic vascular networks with

morphological properties that guarantee the correct flow of the blood and the oxygenation of

the retinal surface observed by fundus cameras. The validity of our synthetic retinal images

has been demonstrated by qualitative assessment and quantitative analysis.

1. Vascular Morphology
An example-based method, the Active Shape Model2,

is used to synthesize reliable vessels’ shapes.

The data describing the shape of the vessels have

been collected from 50 retinal fundus images of the

GoDARTS bioresource3. Vessel shapes are aligned

into a coordinate system using a rigid transformation.

Using Principal Component Analysis we could

generate each new synthetic vessel.
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An approach based on Kalman Filtering combined with an extension of the Multiresolution

Hermite vascular cross-section model has been developed capturing the transition of

intensities between vessels and background.

Synthetic vessels are then connected to create the vascular network skeleton. 
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For each branch originating from a

bifurcation point we compute its orientation

and calibre using the bifurcation model

described by Murray’s Law.4

All vessels should be inside the Field of

View (FOV), but outside the foveal region,

avoiding intersections between vessels of

the same type, and converging toward the

fovea.

Synthetic vascular tree

Data collection

Cross-sections spaced by 5px along 

the vessel centreline. 
Intensity RGB 

profile extraction
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Green channel fitted with a 

weighted NonLinear Least 

Squares model using a 6-

parameters Extended

Multiresolution Hermite 

Model (EMHM)6. 
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At the extremities (green circles) we computed five statistical 

texture descriptors (Mean, Std, Skewness, Kurtosis and 

Entropy) on two near-circular windows of 6px radii.

Generation of Vessel Textures

the measurements for the Kalman Filter technique.

6 EMHM parameters

5x2 background texture descriptors 
for a total of 975 artery and 1593 vein profiles  

collected from 15 healthy subjects of HRF dataset5

RED CHANNEL
average intensity profile of the training ones

weighted with underlying background red 

intensity level

Each new intensity profile of the green 

channel is generated taking into account 

the previous one and the surrounding 

background.

GREEN CHANNEL

BLUE CHANNEL

average intensity profile of the training ones

Synthetic RGB profile then cut with Full 

Width at Half Maximum algorithm


