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Abstract. The retinal and cerebral microvasculatures share many mor-
phological and physiological properties. In this pilot we study the
strength of the associations between morphological measurements of the
retinal vasculature, obtained from fundus camera images, and of features
of Small Vessel Disease (SVD), as white matter hyperintensities (WMH)
and perivascular spaces (PVS), obtained from MRI brain scans. We per-
formed a 500-trial bootstrap analysis with Regularized Gaussian linear
regression on a cohort of older community-dwelling subjects (Lothian
Birth Cohort 1936, N = 866) in their eighth decade. Arteriolar bifurca-
tion coefficients, vessel tortuosity and fractal dimension predicted WMH
volume in 23% of the trials. Arteriolar widths, venular bifurcation coeffi-
cients, and venular tortuosity predicted PVS in up to 99.6% of the trials.
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1 Introduction

Small Vessel Diseases (SVDs) are a group of disorders that result from pathologi-
cal alteration of the small blood vessels in the brain, including the small arteries,
capillaries and veins. Of the about 36 million people that are estimated to suffer
from dementia worldwide, up to 65% have an SVD component. Furthermore,
SVD causes about 25% of strokes, worsens outcome after stroke and is a leading
cause of disability, cognitive impairment and poor mobility [5].

Due to the developmental, anatomical and physiological similarities of the
cerebral and retinal vessels [20], and the ease with which the retinal microvascu-
lature can be imaged in wvivo, there has been considerable interest in determin-
ing whether pathologic changes in the retinal vessels parallel changes in cerebral
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vascular health, in particular in SVD [1,9,15]. Morphological features of the reti-
nal vasculature have been associated with stroke, especially small vessel disease
(lacunar) stroke [8,9]. Arteriolar branching coefficients of retinal vessels have
also been associated with periventricular and deep white matter hyperintensi-
ties (WMH) [7]. Reduced fractal dimension (a measure of the complexity of the
retinal vascular network) in older people has been related to WMH severity and
total SVD burden [16]. Narrower retinal arteriolar calibre has been related to
more visible perivascular spaces (PVS) on brain magnetic resonance imaging
(MRI) [19]. Here we consider an array of retinal measurements in an effort to
identify those most closely related to two main features of SVD: WMH and PVS,
both quantified with computational methods reported elsewhere [2,24].

We present results of a bootstrap analysis with Regularized Gaussian linear
regression and cross-validation in a cohort of older community-dwelling subjects
in their eighth decade. This analysis determines which retinal feature sets are
selected most often in building sparse linear regression models, indicating their
importance in predicting associations with WMH and PVS. We report findings
from experiments with and without demographics and common vascular factors
(VRF) as covariates, along with retinal measurements.

2 Materials and Methods

2.1 Study Population

We used data from a sample of the Lothian Birth Cohort 1936 (LBC1936) [6,21],
a community-dwelling cohort being studied in the eighth decade of life. The
LBC1936 comprises 1091 individuals survivors of the Scottish Health Survey of
1947, who were recruited into the study at the age of 70. Of these, 866 were
tested at the second wave of recruitment, at mean age 72.55 years (SD 0.71), of
whom 700 had structural MRI scans, and 814 had fundus photography of both
eyes. Experiments were based on subjects with retinal and MRI data that could
be processed successfully, resulting in 478 and 381 subjects for WMH and PVS,
respectively.

All participants gave written informed consent under protocols approved by
the Lothian (REC 07/MRE00/58) and Scottish Multicentre (MREC/01/0/56)
Research Ethics Committees (http://www.lothianbirthcohort.ed.ac.uk/).

All clinical and imaging acquisition methods in this cohort have been reported
previously [6,21,25]. Medical history variables (hypertension, diabetes, hyperc-
holesterolemia, cardiovascular disease history (CVD)) were assessed at the same
age as brain imaging.

2.2 Retinal Measurements

Digital retinal fundus images were captured using a non-mydriatic camera at
45° field of view (CRDGIi; Canon USA, Lake Success, New York, USA). All
images were centred on the optic disc [18]. Retinal vascular measurements were
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computed for both eyes of each of the included participants using the semi-
automated software package, VAMPIRE (Vessel Assessment and Measurement
Platform for Images of the REtina, University of Edinburgh and Dundee, UK)
version 3.1 [22,23] (Fig. 1), by a trained operator blinded to all other data.

Image rejection was decided by operator inspection (e.g. not enough vessels
visible) or not being able to complete the analysis. Reasons for rejecting image
included poor image quality (e.g. significant blur or cateract obscuring the view
of the retina) and lesions compromising the vasculature appearance preventing
adequate segmentation for subsequent vessel analysis. Subjects were excluded if
images of one or both eyes were unsuitable for analysis.

VAMPIRE 3.1 computes 151 morphometric measurements of the retinal vas-
culature for each eye, yielding to a total of 302 features per subject, includ-
ing standard measurements in Zone B and C (Fig. 1), i.e. central retinal artery
equivalent (CRAE), central retinal vein equivalent (CRVE), arteriole-to-venule
ratio (AVR), arteriolar and venular fractal dimension (D0a, DOv) and tortuosity
estimates, described in details in Material of [16]. Measurements of each type
above are computed by vessel type (artery or vein), zone, quadrant and vessel
generation.

[
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Fig. 1. Retinal fundus image with vessel segments computed in Zone B. Solid lines (red
for arterioles and dark blue for venules) represent the vessels detected automatically
and measured by VAMPIRE. Dotted lines trace the vessels contours computed. (Color
figure online)

2.3 Brain Imaging

Structural brain MRI data were acquired using a 1.5-Tesla GE Signa Hori-
zon HDx scanner (General Electric, Milwaukee, WI), with coronal T1-weighted
(T1w), and axial T2-weighted (T2w), T2*-weighted (T2*w) and fluid-attenuated
inversion recovery (FLAIR)-weighted whole-brain imaging sequences. See [25] for
details.
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Intracranial Volume (ICV) and WMH volume were measured on T2w, T1w,
T1*w and FLAIR scans using a validated semi-automatic pipeline, based on
a multispectral data fusion, reported elsewhere [24]. For this study we express
WMH as percentage of ICV.

The computational assessment of PVS used the T2w images acquired with
11,320 ms repetition time, 104.9 ms echo time, 20.83 KHz bandwidth and 2 mm
slice thickness. The images were reconstructed to a 256 x 256 x 80 matrix, 1 mm
in-plane resolution. PVS were segmented in the centrum semiovale with the
method described in [2]. Briefly the PVS computational method uses the three-
dimensional Frangi filter [12], which parameters are optimized as described
in [2], to enhance and capture the 3D geometrical shape of PVS. Images were
checked and deemed acceptable according to quality control criteria reported
elsewhere [3]. The PVS total volume was the total number of voxels classified as
PVS. An example of WMH and PVS segmentation is shown in Fig. 2.

Fig. 2. Example of brain lesion segmentation: axial T2-weighted slice showing detected
WMH in cyan and PVS in yellow. Corresponding source T2-weighted (left) and FLAIR
(right). (Color figure online)

2.4 Biomarker Discovery by Regularized Gaussian Regression

Our method is based on the framework reported in [11], with the modifications
described here. Gaussian linear regression was used for ease of model interpreta-
tion; model coefficients can be directly linked to feature importance. Regulariza-
tion was used to perform shrinkage and promote sparsity. This approach is well
suited for biomarkers identification as it performs feature selection and model
estimation simultaneously. Assume we have vectors of observations, x; € RP,
and the corresponding likelihoods for each class y; € R, ¢ = 1,---,N. The
Elastic Net [26] objective function for the Gaussian family is:

(ﬂog@%pﬂmz ~ o= x4 A1 = )lIBI3/2+ allBll). (1)
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where 8y and 8 = [51, 82, ,0p] are the regression model coefficients, A > 0
controls the strength of regularization and the elastic next regularization param-
eter 0 < a < 1 quantifies the compromise between ridge (o = 0) and lasso
(a = 1). For highly correlated features, the lasso tends to pick one of the features
and discard the others (promoting sparsity, hence identifying the most relevant
features), whereas the ridge shrinks the feature coefficients towards each other.

The R package glmnet [13] was used to perform the regularized linear regres-
sion experiments. Cross-validation was used to select A. Two values of interest
are reported by glmnet: Apin, the value of A at which the lowest validation set
error is achieved, and A1sg, the A for the model for which the validation error
is within one standard error of \,,i,.

We report experiments using lasso and \;,;,, that drive some model coef-
ficients to zero and thus perform feature selection. As different data samples
give rise to different feature sets being selected, we perform a bootstrap analy-
sis, measuring how likely features and feature subsets are to be included in the
models for randomly chosen data samples. The bootstrap has been shown use-
ful in addressing the lasso issues of data dependency and instability [10]. Each
bootstrap analysis comprised 500 bootstrap trials.

We performed 4 sets of experiments, using WMH and PVS as outcome (see
Table 1). We used two feature vectors: one including VAMPIRE measurements
only, the other VAMPIRE measurements and gender, age at scan, and vascu-
lar risk factors (hypertension, diabetes, hypercholesterolemia and CVD). Model
selection used 10-fold cross-validation (CV) to choose A. The feature coefficients
(6) computed were recorded for each A value (e.g. Apin). We then computed the
number of times (frequency) within the 500 bootstraps that each feature had a
non-zero weight, reflecting its importance for a specific model in the bootstrap
protocol.

Table 1. Sets of experiments

Experiment name | Preditors Outcome
WMHRgetina Retina WMH
WMHEgetina&vrr | Retina & VRF | WMH
PVSgetina Retina PVS
PVSgetina&vrr | Retina & VRF | PVS

3 Results

Figure3 and 4 show examples of a bootstrap trial with outcomes WMH and
PVS, respectively. As can be observed, reduced numbers of features reduce the
mean squared error, suggesting that, for this data set, a small feature set is
comparatively very important.
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Fig. 3. Example of an individual bootstrap trial with WMH as outcome. Varying A
affects the Mean-Squared-Error (with 10-fold CV). Numbers above figure are the num-
bers of features retained in the regularized model. Interval bars are standard deviations.
Bottom image is a zoom of the last part of the top one

Table 2 shows the results of the 4 experiments with different combinations
of predictors (retinal features alone or retinal features plus others) and outcome
(WMH or PVS volume). As can be seen in the table different retinal features
were chosen for different outcomes, while the same retinal features were selected
when VRF were included or not as predictors. In the experiments with WMH
as outcome only hypertension was selected among the VRF.

3.1 Findings

In this specific cohort, increased arteriolar tortuosity, decreased arteriolar
branching coefficients and decreased arteriolar fractal dimension were the
strongest predictors of increased WMH volume. These predictors survived when
we included VRF in the model. In this case, hypertension was also selected.
Retinal measurements were selected in 117/500 trials (23.4%) in the first set of
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Fig. 4. Example of an individual bootstrap trial with PVS as outcome. Varying A
affects the Mean-Squared-Error (with 10-fold CV). Numbers above figure are the num-
bers of features retained in the regularized model. Interval bars are standard deviations

Table 2. Relative feature importance as the number of times a feature was selected
(non-zero weight) in the 500 bootstraps, and direction of associations (+/— sign), for
the 4 sets of experiments described in Table 1. Note: TortGla = arteriolar tortuos-
ity, BCa = arteriolar branching coefficients, DOa = fractal dimension of the arterial
vasculature, GradQ3a = gradient of width of the main arteriole, BSTDa = standard
deviation of the arteriole widths, TortQ4G1lv = venular tortuosity, GradQ4a = gradient
of width of the main arteriole, GradQ4a = gradient of width of the main venule, CRAE
= central retinal arterial equivalent, BCv = venular branching coefficients, TortQ3v =
venular tortuosity.

Features WMHEgetina WMHRetina&vRE Features|PVSgetina PVSRetina&VRE
TortGla |117 + 102 + CRAE |498 — 498 —
BCa 117 — 102 — BCv 484 + 484 +
DOa 117 - 102 — TortQ3v|322 + 322 +
GradQ3a 61 + 77+

BSTDa 34 + 52 +

TortQ4G1v| 10 + 21 +

GradQ4a 4 +

GradQ3v 4+

Hibp 95 +

age 4+

gender 4+

experiments, and in 102/500 trials (22.4%) in the second set. Decreased CRAE,
increased venular bifurcation coefficients, and increased venular tortuosity were
selected as predictors of increased PVS volume. These features were selected in
498, 484, 322 trials (99.6%, 96.8%, 64.4%) respectively.

4 Discussion and Conclusions

This pilot study used a bootstrap analysis based on regularized Gaussian linear
regression and bootstrap to investigate the associations or retinal vascular fea-
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tures computed with VAMPIRE 3.1 software in fundus camera images compared
with WMH and PVS as outcomes in older people.

Our findings are in agreement with those of several previous clinical and
population-based studies that showed associations between retinal vascular
changes and markers of cerebral small vessel disease; see Hilal et al. [14] for
a useful summary. For instance, Mutlu et al. [19] reported associations between
retinal vessel width and PVS using visual rating scales. Using our same cohort,
McGrory et al. [16] reported significant associations between fractal dimension
and WMH. Doubal et al. [7] reported associations between bifurcation coeffi-
cients and WMH in patients presenting with mild stroke.

The present findings support the hypothesis that retinal fractal dimension
is a possible indicator of the state of health of the brain vasculature and might
have a significant associations with changes taking place in cerebral small ves-
sels. Reduced branching coefficients were also associated with more WMH. The
relationship between tortuosity and SVD may reflect worsening vessel wall con-
tractility. Since both arteriole narrowing is an indicator of adverse microvessel
health, this work provides further evidence that increase in total visible PVS
volume reflect underlying microvascular pathology rather than being an epiphe-
nomenon.

4.1 Strengths, Limitations and Future Work

The strengths of the current study include the use of computational mea-
sures which increase sensitivity respect to previous studies that used visual
scores [16,19]. Furthermore, compared with previous studies, we have looked
simultaneously at a wider range of key retinal vascular characteristics so as to
sort out the relative importance of each. To our knowledge, the current study
is the first that uses regularized regression to investigate the strength of retinal
measurements to associate with computational measure of WMH and PVS.
This study has several limitations. First, its cross-sectional design preventing
us from estimating the role of retinal parameters for risk prediction. Longitudi-
nal studies examining retinal changes and progression of WMH and PVS would
be valuable to assess retinal features as actual predictors of worsening WMH
and PVS and as early manifestation of SVD. Such cohorts are not easily acces-
sible at the time of writing. Second, it was possible to obtain valid quantitative
measurements (retina and brain) only in a subset of the sample (68%). Future
work includes developing feature measuring algorithms resilient to image vari-
ations [4]. Third, the quantitative effect on statistical inference of inaccuracies
in the semi-automatic measurements of the retinal vasculature has never been
modelled. For instance, CRAE and CRVE are subject to magnification effects
and refractive error; FD is dependent on the vessel segmentation accuracy, which
in turn depends on image quality, presence of cataracts and floaters [17]. Fourth,
results were obtained with 10-fold cross-validation; a held-out test set could be
adopted to improve performance, although the focus of this work was investi-
gating discriminative sets of retinal features, not maximizing performance.
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